Jetson TX2 初体验

    xiaoxiao2021-04-19  170

    0. 简介

    Jetson TX2【1】是基于 NVIDIA Pascal™ 架构的 AI 单模块超级计算机,性能强大(1 TFLOPS),外形小巧,节能高效(7.5W),非常适合机器人、无人机、智能摄像机和便携医疗设备等智能终端设备。Jatson TX2 与 TX1 相比,内存和 eMMC 提高了一倍,CUDA 架构升级为 Pascal,每瓦性能提高一倍,支持 Jetson TX1 模块的所有功能,支持更大、更深、更复杂的深度神经网络。

    TX2 内部结构如下:

    1. 开箱

    过程细节不展开,板卡上电后来张照片:

    2. 刷机

    TX2 出厂时,已经自带了 Ubuntu 16.04 系统,可以直接启动。但一般我们会选择刷机,目的是更新到最新的 JetPack L4T,并自动安装最新的驱动、CUDA Toolkit、cuDNN、TensorRT。

    刷机注意以下几点:

    Host 需要安装 Ubuntu 14.04,至少预留 15 GB 硬盘空间,不要用 root 用户运行 JetPack-${VERSION}.run,我用的是 JetPack-L4T-3.1-linux-x64.runTX2 需要进入 Recovery Mode,参考随卡自带的说明书步骤刷机时间大概需要 1~2 小时,会格式化 eMMC,主要备份数据

    3. 运行视频目标检测 Demo

    刷机成功后,重启 TX2,连接键盘鼠标显示器,就可以跑 Demo 了。

    nvidia@tegra-ubuntu:~/tegra_multimedia_api/samples/backend$ ./backend 1 ../../data/Video/sample_outdoor_car_1080p_10fps.h264 H264 --trt-deployfile ../../data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.prototxt --trt-modelfile ../../data/Model/GoogleNet_one_class/GoogleNet_modified_oneClass_halfHD.caffemodel --trt-forcefp32 0 --trt-proc-interval 1 -fps 10

    视频截图如下:

    4. 运行 TensorRT Benchmark

    TensorRT 【3】是 Nvidia GPU 上的深度学习 inference 优化库,可以将训练好的模型通过优化器生成 inference 引擎

    将 TX2 设置为 MAXP (最高性能)模式,运行 TensorRT 加速的 GoogLeNet、VGG16 得到处理性能如下:

    5. TX2 不支持的 feature

    不支持 int8待发现

    参考文献

    【1】嵌入式系统开发者套件和模块 | NVIDIA Jetson | NVIDIA【2】Download and Install JetPack L4T【3】TensorRT

    附录

    deviceQuery

    nvidia@tegra-ubuntu:~/work/TensorRT/tmp/usr/src/tensorrt$ cd /usr/local/cuda/samples/1_Utilities/deviceQuery nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ls deviceQuery deviceQuery.cpp deviceQuery.o Makefile NsightEclipse.xml readme.txt nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/deviceQuery$ ./deviceQuery ./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 1 CUDA Capable device(s) Device 0: "NVIDIA Tegra X2" CUDA Driver Version / Runtime Version 8.0 / 8.0 CUDA Capability Major/Minor version number: 6.2 Total amount of global memory: 7851 MBytes (8232062976 bytes) ( 2) Multiprocessors, (128) CUDA Cores/MP: 256 CUDA Cores GPU Max Clock rate: 1301 MHz (1.30 GHz) Memory Clock rate: 1600 Mhz Memory Bus Width: 128-bit L2 Cache Size: 524288 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 32768 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 1 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: Yes Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Disabled Device supports Unified Addressing (UVA): Yes Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = NVIDIA Tegra X2 Result = PASS

    内存带宽测试

    nvidia@tegra-ubuntu:/usr/local/cuda/samples/1_Utilities/bandwidthTest$ ./bandwidthTest [CUDA Bandwidth Test] - Starting... Running on... Device 0: NVIDIA Tegra X2 Quick Mode Host to Device Bandwidth, 1 Device(s) PINNED Memory Transfers Transfer Size (Bytes) Bandwidth(MB/s) 33554432 20215.8 Device to Host Bandwidth, 1 Device(s) PINNED Memory Transfers Transfer Size (Bytes) Bandwidth(MB/s) 33554432 20182.2 Device to Device Bandwidth, 1 Device(s) PINNED Memory Transfers Transfer Size (Bytes) Bandwidth(MB/s) 33554432 35742.8 Result = PASS NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

    GEMM 测试

    nvidia@tegra-ubuntu:/usr/local/cuda/samples/7_CUDALibraries/batchCUBLAS$ ./batchCUBLAS -m1024 -n1024 -k1024 batchCUBLAS Starting... GPU Device 0: "NVIDIA Tegra X2" with compute capability 6.2 ==== Running single kernels ==== Testing sgemm #### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0xbf800000, -1) beta= (0x40000000, 2) #### args: lda=1024 ldb=1024 ldc=1024 ^^^^ elapsed = 0.00372291 sec GFLOPS=576.83 @@@@ sgemm test OK Testing dgemm #### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0x0000000000000000, 0) beta= (0x0000000000000000, 0) #### args: lda=1024 ldb=1024 ldc=1024 ^^^^ elapsed = 0.10940003 sec GFLOPS=19.6296 @@@@ dgemm test OK ==== Running N=10 without streams ==== Testing sgemm #### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0xbf800000, -1) beta= (0x00000000, 0) #### args: lda=1024 ldb=1024 ldc=1024 ^^^^ elapsed = 0.03462315 sec GFLOPS=620.245 @@@@ sgemm test OK Testing dgemm #### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0) #### args: lda=1024 ldb=1024 ldc=1024 ^^^^ elapsed = 1.09212208 sec GFLOPS=19.6634 @@@@ dgemm test OK ==== Running N=10 with streams ==== Testing sgemm #### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0x40000000, 2) beta= (0x40000000, 2) #### args: lda=1024 ldb=1024 ldc=1024 ^^^^ elapsed = 0.03504515 sec GFLOPS=612.776 @@@@ sgemm test OK Testing dgemm #### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0) #### args: lda=1024 ldb=1024 ldc=1024 ^^^^ elapsed = 1.09177494 sec GFLOPS=19.6697 @@@@ dgemm test OK ==== Running N=10 batched ==== Testing sgemm #### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0x3f800000, 1) beta= (0xbf800000, -1) #### args: lda=1024 ldb=1024 ldc=1024 ^^^^ elapsed = 0.03766394 sec GFLOPS=570.17 @@@@ sgemm test OK Testing dgemm #### args: ta=0 tb=0 m=1024 n=1024 k=1024 alpha = (0xbff0000000000000, -1) beta= (0x4000000000000000, 2) #### args: lda=1024 ldb=1024 ldc=1024 ^^^^ elapsed = 1.09389901 sec GFLOPS=19.6315 @@@@ dgemm test OK Test Summary 0 error(s) 相关资源:基于NVIDIA jetson平台Torch安装教程 Jetson-Inference使用

    最新回复(0)