论文精选 | 人工智能怎么改变自己呢——反思逻辑程序上下文中的AGM式信念修正...

    xiaoxiao2021-04-19  231

    应用场景导读:主体接受新信息、修正自己的信念,这是一个非常普遍的现象。逻辑学家们从20世纪80年代开始研究其中的逻辑规律,建立了信念修正理论。在AGM框架中,智能数据库不仅负责存储计划者(planner)的信念,还负责保持它们的一致性。在强化的框架中有两类数据库,一个存储信念(beliefs),一个存储意图(intentions),不仅负责维持每类数据库的一致性,还维持它们之间的一致性。

    标题:

    反思逻辑程序上下文中的AGM式信念修正

    摘要:

    信念修正主要研究背景的逻辑单调性。本文中,我们研究的其实是根本逻辑非单调时的信念修正——这是一个正在探索中的有趣问题。尤其是,我们将专注于回答集语义中被表示为逻辑程序的信念本身,而新信息也被类似表示为一个逻辑程序。我们的方式是通过不同于单调集中的观察,必要时维护信念的修订主体需要抛弃一些旧信念,一个非单调集的连贯性也可以通过添加新信念恢复。我们将分别通过句法和模型-理论方法定义两个修正函数,并用定理把它们表示描述出来了。

    第一作者简介:

    Zhiqiang Zhuang 

    澳大利亚格里菲斯大学集成智能研究所,格里菲斯大学博士后,新南威尔士大学博士,研究领域为知识表示和推理。

    发表论文摘选:

    2016 Zhiqiang Zhuang, Zhe Wang, Kewen Wang, Guilin Qi, DL-Lite Contraction and Revision, Journal of Artificial Intelligence Research 56 (2016) 329-378. Zhiqiang Zhuang, Maurice Pagnucco, Yan Zhang, Inter-definability of Horn Contraction and Revision, Accepted for publication at Journal of Philosophical Logic. Zhiqiang Zhuang, James Delgrande, Abhaya Nayak, Abdul Sattar, Reconsidering AGM-Style Belief Revision in the Context of Logic Programs, To appear in proceedings of the 22nd European Conference on Artificial Intelligence (ECAI-16). 2015 Zhiqiang Zhuang, Zhe Wang, Kewen Wang, James Delgrande, Extending AGM Contraction to Arbitrary Logics, In proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-15), pages 3299-3307. Kinzang Chhogyal, Abhaya Nayak, Zhiqiang Zhuang, Abdul Sattar, Probabilistic Belief Contraction Using Argumentation, In proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-15), pages 2854-2860. Yisong Wang, Kewen Wang, Zhe Wang, Zhiqiang Zhuang, Knowledge Forgetting in Circumscription: A Preliminary Report, In proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI-15), pages 1649-1655. Sebastian Binnewies, Zhiqiang Zhuang, Kewen Wang, Partial Meet Revision and Contraction in Logic Programs, In proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI-15), pages 1439-1445. Guilin Qi, Zhe Wang, Kewen Wang, Xuefeng Fu, Zhiqiang Zhuang, Approximating Model-based ABox Revision in DL-Lite: Theory and Practice, In proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI-15), pages 254-260. Zhe Wang, Kewen Wang, Zhiqiang Zhuang, Guilin Qi, Instance-driven Ontology Evolution in DL-Lite, In proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI-15), pages 1656-1662. 2014 Zhiqiang Zhuang, Maurice Pagnucco, Entrenchment-Based Horn Contraction, Journal of Artificial Intelligence Research (JAIR) 51 (2014), pages 227-254. Zhiqiang Zhuang, Zhe Wang, Kewen Wang, Guilin Qi, Contraction and Revision over DL-Lite TBoxes, In proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI-14), pages 1149-1156. 2013 Yisong Wang, Zhiqiang Zhuang, Kewen Wang, Belief Change in Nonmonotonic Multi-Context Systems, In proceedings of the 12th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-13), pages 543-555. Zhiqiang Zhuang, Maurice Pagnucco, Yan Zhang, Definability of Horn Revision from Horn Contraction. In proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI-13), pages 1205-1211.  2012 Zhiqiang Zhuang, Maurice Pagnucco, Model Based Horn Contraction. In Proc. of the 13th International Conference on Principles of Knowledge Representation and Reasoning (KR-12), pages 169-178.  2011 Zhiqiang Zhuang, Maurice Pagnucco, Transitively Relational Partial Meet Horn Contractions. In proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11), pages 1132-1138.  2010 Zhiqiang Zhuang, Maurice Pagnucco, Two Methods for Constructing Horn Contractions. In proceedings of the 23rd Australasian Conference on Artificial Intelligence 2010 (AI-10), pages 72-81.  Zhiqiang Zhuang, Maurice Pagnucco, Horn Contraction via Epistemic Entrenchment. In proceedings of the 12th European Conference on Logics in Artificial Intelligence (JELIA-10), pages 339-351.   2007 Zhiqiang Zhuang, Maurice Pagnucco, and Thomas Meyer, Implementing Iterated Belief Change Via Prime Implicates. In proceedings of the 20th Australian Joint Conference on Artificial Intelligence (AI-07), pages 507-518. 

    via PRICAI 2016

    论文原文件下载

    雷锋网按: 本文由雷锋网(公众号:雷锋网)独家编译,未经许可禁止转载!

    本文作者:陈杨英杰

    本文转自雷锋网禁止二次转载,原文链接

    相关资源:论文研究-上线性码的深度分布.pdf

    最新回复(0)