1.1 软件环境 三个节点 OS:64位RHEL5及以上或者64位CentOS6.0及以上 JVM:预装64位JDK 1.8及以上版本 1.2 浏览器要求 Firefox 39.0.0版本及以上或者Google Chrome 54.0.2840.8版本及以上。 BEH-Manager-4.1.2安装包于官方网站下载:http://beh.pezy.cn/
2.1准备虚拟机 准备三个节点的虚拟机 2.2 修改主机名 在各个节点执行以下操作来修改主机名,使集群下的主机有格式一个统一的主机名,以便后续的操作和维护 修改主机名
vi /etc/sysconfig/network 192.168.xx.210 ha01 (其它俩台分别修改自己的ha02 ha03)
修改host映射
vi /etc/hosts 192.168.xx.210 ha01 192.168.xx.220 ha02 192.168.xx.230 ha03
W5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1dhbmdaaGFvTG9uZ2pr,size_16,color_FFFFFF,t_70)2.3 关闭防火墙
service iptables stop chkconfig iptables off
2.4 配置时间同步
yum –y install ntpdate ntpdate pool.ntp.org
2.5 配置ssh免秘登录 yum –y install openssh-clients ssh-keygen –t rsa ssh-copy-id ha0x(记得给自己和其它俩台都要发)
2.6 安装jdk 自己安装(记得配置环境变量) 3 安装其他组件 3.1 安装zookeeper
注:以下所有安装默认是在ha01上执行! 解压软件包 将zookeeper-3.4.6.tar.gz 解压缩,tar -zxvf zookeeper-3.4.6.tar.gz –C /usr/local/
修改配置文件(在ha01执行) 修改Zookeeper配置文件/usr/local/zookeeper3.4.6/conf/zoo_sample.cfg重名为zoo.cfg。mv zoo_sample.cfg zoo.cfg
修改zoo.cfg,添加如下内容
server.1=ha01:2888:3888 server.2=ha02:2888:3888 server.3=ha03:2888:3888
创建相关目录 创建/tmp/zookeeper目录,并在此目录下创建myid文件。mkdir /tmp/zookeeper cd /tmp/zookeeper vi myid
在文件中写入数字 4. 分发zookeeper软件包 scp -r /usr/local/zookeeper-3.4.6 ha02:/usr/local scp -r /usr/local/zookeeper-3.4.6 ha03:/usr/local
5. 修改myid文件到ha2与ha3上重复三步骤,分别把myid修改为2,3
6.启动Zookeeper 在ha01,ha02,ha03上执行
zkServer.sh start
查看进程QuorumPeerMain是否启动 查看zookeeper状态 3.2 安装高可用hadoop hadoop部分的配置分为两部分hdfs和yarn。 3.2.1 HDFS 6. 修改配置文件 修改core-site.xml(如果文件不存在,但是core-site.xml.template文件存在,则先修改文件名,执行mv core-site.xml.template core-site.xml) vi /usr /local/hadoop-2.7.3/etc/hadoop/core-site.xml
修改为以下内容:
<configuration> <property> <name>fs.defaultFS</name> <value>hdfs://beh</value> <final>false</final> </property> <property> <name>hadoop.tmp.dir</name> <value>/usr/local/hadoopdata</value> <final>false</final> </property> <property> <name>ha.zookeeper.quorum</name> <value>ha01:2181,ha02:2181,ha03:2181</value> <final>false</final> </property> </configuration>修改hdfs-site.xml vi /usr/local/hadoop-2.7.3/etc/hadoop/hdfs-site.xml
修改为以下内容:
<configuration> <property> <name>dfs.nameservices</name> <value>beh</value> <final>false</final> </property> <property> <name>dfs.ha.namenodes.beh</name> <value>nn1,nn2</value> <final>false</final> </property> <property> <name>dfs.namenode.rpc-address.beh.nn1</name> <value>ha01:9000</value> <final>false</final> </property> <property> <name>dfs.namenode.http-address.beh.nn1</name> <value>ha01:50070</value> <final>false</final> </property> <property> <name>dfs.namenode.rpc-address.beh.nn2</name> <value>ha02:9000</value> <final>false</final> </property> <property> <name>dfs.namenode.http-address.beh.nn2</name> <value>ha02:50070</value> <final>false</final> </property> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://ha01:8485;ha02:8485;ha03:8485/beh</value> <final>false</final> </property> <property> <name>dfs.ha.automatic-failover.enabled.beh</name> <value>true</value> <final>false</final> </property> <property> <name>dfs.client.failover.proxy.provider.beh</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> <final>false</final> </property> <property> <name>dfs.journalnode.edits .dir</name> <value>/usr/local/metadata/journal</value> <final>false</final> </property> <property> <name>dfs.ha.fencing.methods</name> <value>sshfence shell(/bin/true) </value> <final>false</final> </property> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/usr/local/.ssh/id_rsa</value> <final>true</final> </property> <property> <name>dfs.replication</name> <value>2</value> <final>false</final> </property> <configuration>修改slaves vi /usr/local/hadoop-2.7.3/etc/hadoop/slaves 修改为以下内容:
ha02 ha03
3.2.2 YARN 修改mapred-site.xml vi /usr/local/hadoop2.7.3/etc/hadoop/mapred-site.xml
修改为以下内修改为以下内容:
<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapreduce.jobhistory.address</name> <value>ha02:10020</value> </property> <property> <name>mapreduce.jobhistory.webapp.address</name> <value>ha03:19888</value> </property> <property> <name>yarn.app.mapreduce.am.staging-dir</name> <value>/usr/local/metadata/hadoop-yarn/staging</value> </property> </configuration>修改yarn-site.xml
vi /usr/local/hadoop2.7.3/etc/hadoop/yarn-site.xml
修改为以下内容:
<configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> <property> <name>yarn.nodemanager.local-dirs</name> <value>/usr/local/metadata/yarn</value> </property> <property> <name>yarn.nodemanager.log-dirs</name> <value>/usr/local/logs/yarn/userlogs</value> </property> <property> <name>yarn.log-aggregation-enable</name> <value>true</value> </property> <property> <description>Where to aggregate logs</description> <name>yarn.nodemanager.remote-app-log-dir</name> <value>hdfs://beh/var/log/hadoop-yarn/apps</value> </property> <!-- Resource Manager Configs --> <property> <name>yarn.resourcemanager.connect.retry-interval.ms</name> <value>2000</value> </property> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <property> <name>yarn.resourcemanager.ha.automatic-failover.enabled</name> <value>true</value> </property> <property> <name>yarn.resourcemanager.cluster-id</name> <value>beh</value> </property> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property> <!--RM1 RM2 is different--> <property> <name>yarn.resourcemanager.ha.id</name> <value>rm1</value> </property> <property> <name>yarn.resourcemanager.scheduler.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value> </property> <property> <name>yarn.resourcemanager.recovery.enabled</name> <value>true</value> </property> <property> <name>yarn.resourcemanager.store.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value> </property> <property> <name>yarn.resourcemanager.zk.state-store.address</name> <value>ha01:2181,ha02:2181,ha03:2181</value> </property> <property> <name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name> <value>5000</value> </property> <!-- RM1 configs --> <property> <name>yarn.resourcemanager.address.rm1</name> <value>ha01:23140</value> </property> <property> <name>yarn.resourcemanager.scheduler.address.rm1</name> <value>ha01:23130</value> </property> <property> <name>yarn.resourcemanager.webapp.https.address.rm1</name> <value>ha01:23189</value> </property> <property> <name>yarn.resourcemanager.webapp.address.rm1</name> <value>ha01:23188</value> </property> <property> <name>yarn.resourcemanager.resource-tracker.address.rm1</name> <value>ha01:23125</value> </property> <property> <name>yarn.resourcemanager.admin.address.rm1</name> <value>ha01:23141</value> </property> <!-- RM2 configs --> <property> <name>yarn.resourcemanager.address.rm2</name> <value>ha02:23140</value> </property> <property> <name>yarn.resourcemanager.scheduler.address.rm2</name> <value>ha02:23130</value> </property> <property> <name>yarn.resourcemanager.webapp.https.address.rm2</name> <value>ha02:23189</value> </property> <property> <name>yarn.resourcemanager.webapp.address.rm2</name> <value>ha02:23188</value> </property> <property> <name>yarn.resourcemanager.resource-tracker.address.rm2</name> <value>ha02:23125</value> </property> <property> <name>yarn.resourcemanager.admin.address.rm2</name> <value>ha02:23141</value> </property> <!-- Node Manager Configs --> <property> <name>mapreduce.shuffle.port</name> <value>23080</value> </property> <property> <name>yarn.resourcemanager.zk-address</name> <value>ha01:2181,ha02:2181,ha03:2181</value> </property> </configuration> 修改环境变量 **vim /usr/local/hadoop-2.7.3/etc/hadoop/hadoop-env.shvim /usr/local/hadoop-2.7.3/etc/hadoop/yarn-env.sh**
修改为以下内容: export JAVA_HOME=/usr/local/jdk1.8.0_102
3.2.3 分发配置文件
scp -r /usr/local/hadoop2.7.3 ha02:/usr/local scp -r /usr/local/hadoop2.7.3 ha03:/usr/local
注:将以上配置复制到所有节点3.2.4 启动HDFS 启动journalnode(进程名:JournalNode)
注 (这个要在3台全部运行)如果配了环境变量就不用打sbinsbin/hadoop-daemon.sh start journalnode
格式化zookeeper,
对ha01节点进行格式化和启动启动namenode(进程名:NameNode):hdfs namenode -format sbin/hadoop-daemon.sh start namenode
对ha02节点进行格式化和启动hdfs namenode -bootstrapStandby sbin/hadoop-daemon.sh start namenode
**在ha01和ha02上启动zkfc服务(zkfc服务进程名:DFSZKFailoverController):此时ha01和ha02就会有一个节点变为active状态**sbin/hadoop-daemon.sh start zkfc
启动datanode(进程名:DataNode):在ha01上执行sbin/hadoop-daemons.sh start datanode
打开浏览器,访问 hadoop1:50070 以及 hadoop2:50070,你将会看到两个namenode一个是active而另一个是standby。 然后kill掉其中active的namenode进程,另一个standby的naemnode将会自动转换为active状态
ha02:50070 或端口号 192.168.83.140:50070
3.2.6 启动yarn 在hadoop1上启动(此脚本将会启动hadoop1上的resourcemanager及所有的nodemanager)
$HADOOP_HOME/sbin/start-yarn.sh
在hadoop2上启动resourcemanagerl $HADOOP_HOME/sbin/yarn-daemon.sh start resourcemanager
打开浏览器,访问ha01:23188或者ha02:23188,只有active的会打开如下界面,standby的那个不会看到页面。
然后kill掉active的resourcemanager另一个将会变为active的,说明resourcemanager HA是成功的