这篇文章不是讲令牌桶算法原理,关于原理,请参考 https://blog.csdn.net/lzw_2006/article/details/51768935
我这里只是使用golang语言来实现令牌桶算法,以及时间窗口限流。
#### 针对接口进行并发控制
如果担心接口某个时刻并发量过大了,可以细粒度地限制每个接口的 总并发/请求数
以下代码golang实现 ```go package main
import ( "fmt" "net" "os" "sync/atomic" "time" )
var ( limiting int32 = 1 // 这就是我的令牌桶 )
func main() { tcpAddr, err := net.ResolveTCPAddr("tcp4", "0.0.0.0:9090") //获取一个tcpAddr checkError(err) listener, err := net.ListenTCP("tcp", tcpAddr) //监听一个端口 checkError(err) defer listener.Close() for { conn, err := listener.Accept() // 在此处阻塞,每次来一个请求才往下运行handle函数 if err != nil { fmt.Println(err) continue } go handle(&conn) // 起一个单独的协程处理,有多少个请求,就起多少个协程,协程之间共享同一个全局变量limiting,对其进行原子操作。 } }
func handle(conn *net.Conn) { defer (*conn).Close() n := atomic.AddInt32(&limiting, -1) // dcr 1 by atomic,获取一个令牌,总数减1。这是一个原子性的操作,并发情况下,数据不会写错。 if n < 0 { // 令牌不够用了,限流,抛弃此次请求。 (*conn).Write([]byte("HTTP/1.1 404 NOT FOUND\r\n\r\nError, too many request, please try again.")) } else { // 还有剩余令牌可用 time.Sleep(1 * time.Second) // 假设我们的应用处理业务用了1s的时间 (*conn).Write([]byte("HTTP/1.1 200 OK\r\n\r\nI can change the world!")) // 业务处理结束后,回复200成功。 } atomic.AddInt32(&limiting, 1) // add 1 by atomic,业务处理完毕,放回令牌 }
// 异常报错的处理 func checkError(err error) { if err != nil { fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error()) os.Exit(1) } } ``` limiting这个变量就是我用来限流的,把它看做令牌桶的池子吧。初始池中只有1个令牌,每一条处理请求,sleep了1秒。看看并发的效果。在一个终端中启动 ``` go run example1.go ``` 另外起一个终端,用golang的boom来做压测。要提前安装boom工具 ``` go get github.com/rakyll/hey go install github.com/rakyll/hey ``` 然后压测 ```sh $ hey -c 10 -n 50 http://localhost:9090 Summary: Total: 5.0246 secs Slowest: 1.0066 secs Fastest: 0.0008 secs Average: 0.1023 secs Requests/sec: 9.9510
Response time histogram: 0.001 [1] |■ 0.101 [44] |■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 0.202 [0] | 0.303 [0] | 0.403 [0] | 0.504 [0] | 0.604 [0] | 0.705 [0] | 0.805 [0] | 0.906 [0] | 1.007 [5] |■■■■■
Latency distribution: 10% in 0.0011 secs 25% in 0.0013 secs 50% in 0.0014 secs 75% in 0.0044 secs 90% in 1.0021 secs 95% in 1.0061 secs 0% in 0.0000 secs
Details (average, fastest, slowest): DNS+dialup: 0.0016 secs, 0.0008 secs, 1.0066 secs DNS-lookup: 0.0010 secs, 0.0003 secs, 0.0022 secs req write: 0.0002 secs, 0.0000 secs, 0.0008 secs resp wait: 0.1022 secs, 0.0000 secs, 1.0050 secs resp read: 0.0001 secs, 0.0000 secs, 0.0002 secs
Status code distribution: [200] 5 responses [404] 45 responses ``` hey命令-c表示并发数,我设为10,-n表示总共发送多少条,我发50条。
结果是只有5条返回http成功的状态码200,其他45条都失败了。这说明有得线程能竞争资源成功,有的线程竞争资源失败,这里只有5个竞争成功的。总共用时也就5.0246秒,平均速率1r/s。这种结果这和代码中令牌池只有1个令牌,而每个请求要花1s的时间的要求相吻合。说明我们现在将请求限流在1r/s,超过这个速度涌进来的请求都会被抛弃404。
注意:这里使用的是golang的协程,和线程还是有区别的,不过在这里不影响我们做测试,只要把它理解为并发就行了,协程的原理可以去搜下看看。
修改一下结果,把limiting改成10,再测试 ``` ...... Status code distribution: [200] 50 responses ``` 这回是恰到好处啊,刚好满足10r/s的QPS,所有的请求都成功了。
当然,这种并发控制方式简单粗暴,没有平滑处理,慎用。
#### 针对时间窗口进行并发控制
如果某个基础服务调用量很大,我们害怕它被突然的大流量打挂,所以需要限制一个窗口期内接口的请求量。下面是一种实现窗口时间并发控制的方法
我们使用缓存来存储计数器,秒数作为Key,Value代表这一秒有多少个请求。这样就限制了一秒内的并发数,过期时间设置长一些,比如两秒,保证一秒内的数据是存在的。 ```go package main
import ( "fmt" "net" "os" "time" cache "github.com/UncleBig/goCache" )
var ( limit int = 10 c *cache.Cache )
func main() { c = cache.New(10*time.Minute, 30*time.Second) tcpAddr, err := net.ResolveTCPAddr("tcp4", "0.0.0.0:9090") //获取一个tcpAddr checkError(err) listener, err := net.ListenTCP("tcp", tcpAddr) //监听一个端口 checkError(err) defer listener.Close() for { conn, err := listener.Accept() if err != nil { fmt.Println(err) continue } go handle(&conn) } }
func handle(conn *net.Conn) { defer (*conn).Close() t := time.Now().Unix() key := fmt.Sprintf("%d", t) if n, found := c.Get(key); found { num := n.(int) fmt.Printf("key:%d num:%d\n", t, num) if num >= limit { (*conn).Write([]byte("HTTP/1.1 404 NOT FOUND\r\n\r\nError, too many request, please try again.")) } else { (*conn).Write([]byte("HTTP/1.1 200 OK\r\n\r\nI can change the world!")) c.Increment(key, 1) } } else { (*conn).Write([]byte("HTTP/1.1 200 OK\r\n\r\nI can change the world!")) c.Set(key, 1, 2 * time.Second) } }
func checkError(err error) { if err != nil { fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error()) os.Exit(1) } } ``` 这段代码用了缓存,所以要先下载库 ``` go get -u github.com/UncleBig/goCache ``` 同样的方式启动测试,先来个小测试,服务端打印日志 ```sh [root@VM_195_216_centos ~]# go run example2.go key:1510229724 num:1 success key:1510229724 num:2 success key:1510229724 num:3 success key:1510229724 num:4 success key:1510229724 num:5 success key:1510229724 num:6 success key:1510229724 num:7 success key:1510229724 num:8 success key:1510229724 num:9 success key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed key:1510229724 num:10 failed ``` 再看看我们测试用的命令 ``` $ hey -c 10 -n 30 http://localhost:9090 ...... Status code distribution: [200] 10 responses [404] 20 responses ``` 结果是10条成功20条失败。看服务端 的日志发现,所有的日志都是打印的同一秒(1510229724)内的请求。当累计处理完10条限流要求的请求之后(num从1打印到10),再往后在这一秒内的请求都直接返回失败了,在这一秒内的限流取得了成功。
接下来再看看,大量持续请求的情况下,限流效果。 ```sh [root@VM_195_216_centos ~]# go run example2.go key:1510229933 num:1 success key:1510229933 num:2 success key:1510229933 num:3 success key:1510229933 num:4 success key:1510229933 num:5 success key:1510229933 num:6 success key:1510229933 num:7 success key:1510229933 num:8 success key:1510229933 num:9 success key:1510229933 num:10 failed key:1510229933 num:10 failed ...... key:1510229933 num:10 failed key:1510229933 num:10 failed key:1510229934 num:1 success key:1510229934 num:2 success key:1510229934 num:3 success key:1510229934 num:4 success key:1510229934 num:5 success key:1510229934 num:6 success key:1510229934 num:7 success key:1510229934 num:8 success key:1510229934 num:9 success key:1510229934 num:10 failed key:1510229934 num:10 failed ...... key:1510229934 num:10 failed key:1510229934 num:10 failed key:1510229935 num:1 success key:1510229935 num:2 success key:1510229935 num:3 success key:1510229935 num:4 success key:1510229935 num:5 success key:1510229935 num:6 success key:1510229935 num:7 success key:1510229935 num:8 success key:1510229935 num:9 success key:1510229935 num:10 failed key:1510229935 num:10 failed ...... key:1510229935 num:10 failed key:1510229935 num:10 failed key:1510229936 num:1 success key:1510229936 num:2 success key:1510229936 num:3 success key:1510229936 num:4 success key:1510229936 num:5 success key:1510229936 num:6 success key:1510229936 num:7 success key:1510229936 num:8 success key:1510229936 num:9 success key:1510229936 num:10 failed key:1510229936 num:10 failed ...... ``` 测试命令 ```sh $ hey -c 10 -n 10000 http://localhost:9090 Summary: Total: 2.9792 secs ...... Status code distribution: [200] 40 responses [404] 9937 responses ``` 这次总共花了近3秒时间,发了1w条请求,由于日志打印太多了,截取部分有代表性的。可以看到经历了3秒,每1秒内都只成功10条,接下来到下一秒之前的请求都是失败的。3秒总共成功了40条,按理说应该30条,可能边界值那几毫秒控制的不是很精准,这个误差可以容忍,还是能达到限流的理想效果。
**** > 创建于 2018-09-08 北京,更新于 2019-05-23 北京
>该文章在以下平台同步 >- HICOOL.TOP: http://www.hicool.top/article/5ce65138215b583cdd068b48 >- : >- 简书: https://www.jianshu.com/p/9032c6f41f1e