from numpy import array
from numpy import argmax
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
# define example
data = ['cold', 'cold', 'warm', 'cold', 'hot', 'hot', 'warm', 'cold', 'warm', 'hot']
values = array(data)
print(values)
# integer encode
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform(values)
print(integer_encoded)
# binary encode
onehot_encoder = OneHotEncoder(sparse=False)
integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
onehot_encoded = onehot_encoder.fit_transform(integer_encoded)
print(onehot_encoded)
# invert first example
inverted = label_encoder.inverse_transform([argmax(onehot_encoded[0, :])])
print(inverted)
独热编码 from numpy import array from numpy import argmax from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder data = ['cold', 'cold', 'warm', 'cold', 'hot', 'hot', 'warm', 'cold', 'warm', 'hot'] #创建独热编码器 onehot_encoder = OneHotEncoder(sparse=False) onehot_encoded = onehot_encoder.fit_transform(array(data).reshape(-1, 1)) print(onehot_encoded) #inverted2 = onehot_encoder.inverse_transform([[1,0,0]]) #独热编码逆转换,函数里的数据形式[[1,0,0]], inverted2 = onehot_encoder.inverse_transform([onehot_encoded[0]]) inverted2=array(inverted2).reshape(1,-1) print(inverted2)