linux+scala+hadoop+yarn+hbase+spark 环境配置

    xiaoxiao2022-07-13  138

    一、scala环境配置

    1.1  下载地址: https://downloads.lightbend.com/scala/2.11.8/scala-2.11.8.tgz 

    1.2 解压、配置环境变量 ~./bash_profile

    1.3 命令行直接输入scala测试

     

    二、maven环境变量的配置

    2.1 下载地址3.3.9:https://archive.apache.org/dist/maven/maven-3/3.3.9/binaries/apache-maven-3.3.9-bin.tar.gz

    2.2 解压配置环境变量

    2.3 修改config配置文件settings.xml 以防空间不够

     

    三、hadoop环境的安装(默认端口50070)

    3.1下载安装jdk, hadoop,配置环境变量

    3.2 配置SSH登录 - 一路回车

    // 1. 生成SSH连接 ssh-keygen -t rsa // 2. 查看.ssh目录 cd .ssh/ // 3. [peng@bogon .ssh]$ ls id_rsa id_rsa.pub // 拷贝一份 cp ~/.ssh/id_rsa.pub ~/.ssh/authorized_keys // [peng@bogon .ssh]$ ls authorized_keys id_rsa id_rsa.pub // 此时 ssh已经通了

    3.3然后解压配置hadoop环境变量

    tar -zxvf hadoop-2.6.0-cdh5.7.0.tar.gz -C /home/peng/peng/app/

    3.4 修改hadoop配置文件

    [peng@bogon hadoop]$ vi hadoop-env.sh [peng@bogon hadoop]$ vi core-site.xml  [peng@bogon hadoop]$ vi hdfs-site.xml  [peng@bogon hadoop]$ vi slaves 

    // 切换到配置文件的地方 cd hadoop-2.6.0-cdh5.7.0/etc/hadoop // 全部的配置文件 ls capacity-scheduler.xml httpfs-env.sh mapred-env.sh configuration.xsl httpfs-log4j.properties mapred-queues.xml.template container-executor.cfg httpfs-signature.secret mapred-site.xml.template core-site.xml httpfs-site.xml slaves hadoop-env.cmd kms-acls.xml ssl-client.xml.example hadoop-env.sh kms-env.sh ssl-server.xml.example hadoop-metrics2.properties kms-log4j.properties yarn-env.cmd hadoop-metrics.properties kms-site.xml yarn-env.sh hadoop-policy.xml log4j.properties yarn-site.xml hdfs-site.xml mapred-env.cmd // ------------------只修改关键的几个文件------------------- // 1. 修改第一个配置文件 - 只配置一个java的安装目录就行 vi hadoop-env.sh # export JAVA_HOME=${JAVA_HOME} export JAVA_HOME=/home/peng/peng/app/jdk1.8.0_201 // ----------------------------------------------------- // 2. 修改第二个配置文件 - core-site.xml - 配置文件存放地址相关 vi vi core-site.xml <configuration> <property> <name>fs.defaultFS</name> <value>hdfs://localhost:8020</value> </property> <property> <name>hadoop.tmp.dir</name> <value>/home/peng/peng/hadoop/tmp</value> </property> </configuration> // ----------------------------------------------------- // 3. 修改第三个配置文件 - hdfs-site.xml - 调节副本系数 vi hdfs-site.xml <configuration> <property> <name>dfs.replication</name> <value>1</value> </property> </configuration> // ----------------------------------------------------- // 4. 修改第四个配置文件 - vi slaves - 更改域名相关的 可不改 vi slaves localhost -> hadoop000 // -----------------------------------------------------

    老师 core-site.xml文件的配置

     3.5 hadoop环境变量配完后(省略), 对HDFS进行格式化

    pwd // /home/peng/peng/app/hadoop-2.6.0-cdh5.7.0/bin ls // hadoop hadoop.cmd hdfs hdfs.cmd mapred mapred.cmd rcc yarn yarn.cmd // 格式化 ./hdfs namenode -format 或者 ./hadoop namenode -format // Storage directory /home/peng/peng/hadoop/tmp/dfs/name has been successfully formatted. // 启动hadoop cd sbin/ // 在启动的时候,会让你输入YES, 这是因为配置SSH免密登录,之后不会再登录 ./start-dfs.sh // 启动成功 [peng@bogon sbin]$ jps 18807 QuorumPeerMain 24651 NameNode 24747 DataNode 24879 SecondaryNameNode 25119 Jps

    再虚拟机浏览器输入localhost:50070访问即可 

    四、yarn环境的搭建(默认端口8088)

    4.1 在/etc/hadoop目录下面配置

    // 1 进入目录 cd etc/hadoop // 2 拷贝配置文件 cp mapred-site.xml.template mapred-site.xml // 3 编辑配置 mapred-site.xml- 告诉我们要使用分布式的YARN框架 vi mapred-site.xml <configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> </configuration> // 4 配置这个 vi yarn-site.xml <configuration> <!-- Site specific YARN configuration properties --> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> </configuration>

    4.2 启动yarn 

    ./start-yarn.sh // 命令行 查看启动 jps 25939 ResourceManager 26035 NodeManager

    4.3 验证启动

     

    五、命令行实战 

    // 测试hadoop 在SBIN目录里面 hadoop fs -mkdir /haData hadoop fs -ls / hadoop fs -put slaves.sh /haData hadoop fs -ls /haData hadoop fs -text /haData/slaves.sh // 测试yarn - 在 /home/peng/peng/app/hadoop-2.6.0-cdh5.7.0/share/hadoop/mapreduce下面有很多测试用例 hadoop jar hadoop-mapreduce-examples-2.6.0-cdh5.7.0.jar pi 2 3 验证yarn没毛病

    六、HBase的安装

    6.1 下载地址:http://archive.apache.org/dist/hbase/1.2.0/hbase-1.2.0-bin.tar.gz

    解压 , 配置环境变量

    6.2 修改conf配置文件

    /** * 1. hbase-env.sh 修改两个地方 */ vi hbase-env.sh ------------------------------------------- export JAVA_HOME=/home/peng/peng/ // 让zookeeper来管理实例不用自己 export HBASE_MANAGES_ZK=false ------------------------------------------- /** * 2. hbase-site.xml 添加三个地方 */ vi hbase-site.xml ------------------------------------------- <configuration> #存储在hdfs之上,配置地址 /** *注意,这个地方一定要跟 hadoop core-site.xml 一模一样 *注意,这个地方一定要跟 hadoop core-site.xml 一模一样 *注意,这个地方一定要跟 hadoop core-site.xml 一模一样 */ <property> <name>hbase.rootdir</name> <value>hdfs://localhost:8020/hbase</value> </property> # 单机伪分布式 <property> <name>hbase.cluster.distributed</name> <value>true</value> </property> #zookeeper管理地址 <property> <name>hbase.zookeeper.quorum</name> <value>localhost:2181</value> </property> </configuration> ------------------------------------------- /** * 3. regionservers 存放多个节点得地址IP */ vi regionservers ------------------------------------------- localhost - hadoop000 -------------------------------------------

    6.3 启动zookeeper    ./zkServer.sh start

    6.4启动hbase   localhost:60010

    ./start-hbase.sh jps  20257 Jps 19635 QuorumPeerMain // 下面两个一定要起来 20060 HMaster 20172 HRegionServer

    6.5测试执行hbase脚本

    //执行hdfs脚本 ./ hbase // 测试命令 version status // 创建表 create 'member', 'info', 'address' list desc describe member

    【错误1】

    当执行命令 ./hbase shell   -> status 的时候遇到错误:

    【ERROR: Can't get master address from ZooKeeper; znode data == null】

     

     

    七、spark环境的搭建

    7.1、首先,我们下周源码,自己编译,编译很重要,这里给出编译教程:

    7.2、安装,配置环境变量:我是直接下载的,编译以后再深入

    下载地址: https://archive.apache.org/dist/spark/spark-2.2.0/spark-2.2.0-bin-hadoop2.6.tgz

    7.3、直接使用:

    ./spark -shell --master local[2]

     【错误1】

    ERROR SparkContext: Error initializing SparkContext. java.net.BindException: Cannot assign requested address: Service 'sparkDriver' failed after 16 retries (on a random free port)! Consider explicitly setting the appropriate binding address for the service 'sparkDriver' (for example spark.driver.bindAddress for SparkDriver) to the correct binding address. at sun.nio.ch.Net.bind0(Native Method) at sun.nio.ch.Net.bind(Net.java:433) at sun.nio.ch.Net.bind(Net.java:425) at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:223) at io.netty.channel.socket.nio.NioServerSocketChannel.doBind(NioServerSocketChannel.java:127) at io.netty.channel.AbstractChannel$AbstractUnsafe.bind(AbstractChannel.java:501) at io.netty.channel.DefaultChannelPipeline$HeadContext.bind(DefaultChannelPipeline.java:1218) at io.netty.channel.AbstractChannelHandlerContext.invokeBind(AbstractChannelHandlerContext.java:496) at io.netty.channel.AbstractChannelHandlerContext.bind(AbstractChannelHandlerContext.java:481) at io.netty.channel.DefaultChannelPipeline.bind(DefaultChannelPipeline.java:965) at io.netty.channel.AbstractChannel.bind(AbstractChannel.java:210) at io.netty.bootstrap.AbstractBootstrap$2.run(AbstractBootstrap.java:353) at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:399) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:446) at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:131) at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144) at java.lang.Thread.run(Thread.java:748) java.net.BindException: Cannot assign requested address: Service 'sparkDriver' failed after 16 retries (on a random free port)! Consider explicitly setting the appropriate binding address for the service 'sparkDriver' (for example spark.driver.bindAddress for SparkDriver) to the correct binding address. at sun.nio.ch.Net.bind0(Native Method) at sun.nio.ch.Net.bind(Net.java:433) at sun.nio.ch.Net.bind(Net.java:425) at sun.nio.ch.ServerSocketChannelImpl.bind(ServerSocketChannelImpl.java:223) at io.netty.channel.socket.nio.NioServerSocketChannel.doBind(NioServerSocketChannel.java:127) at io.netty.channel.AbstractChannel$AbstractUnsafe.bind(AbstractChannel.java:501) at io.netty.channel.DefaultChannelPipeline$HeadContext.bind(DefaultChannelPipeline.java:1218) at io.netty.channel.AbstractChannelHandlerContext.invokeBind(AbstractChannelHandlerContext.java:496) at io.netty.channel.AbstractChannelHandlerContext.bind(AbstractChannelHandlerContext.java:481) at io.netty.channel.DefaultChannelPipeline.bind(DefaultChannelPipeline.java:965) at io.netty.channel.AbstractChannel.bind(AbstractChannel.java:210) at io.netty.bootstrap.AbstractBootstrap$2.run(AbstractBootstrap.java:353) at io.netty.util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor.java:399) at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:446) at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:131) at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144) at java.lang.Thread.run(Thread.java:748) <console>:14: error: not found: value spark import spark.implicits._ ^ <console>:14: error: not found: value spark import spark.sql ^ Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 2.2.0 /_/ Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_201) Type in expressions to have them evaluated. Type :help for more information.

     

    最新回复(0)