给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:
struct Node { int val; Node *left; Node *right; Node *next; }填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。
初始状态下,所有 next 指针都被设置为 NULL。
示例:
输入:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":null,"right":null,"val":4},"next":null,"right":{"$id":"4","left":null,"next":null,"right":null,"val":5},"val":2},"next":null,"right":{"$id":"5","left":{"$id":"6","left":null,"next":null,"right":null,"val":6},"next":null,"right":{"$id":"7","left":null,"next":null,"right":null,"val":7},"val":3},"val":1} 输出:{"$id":"1","left":{"$id":"2","left":{"$id":"3","left":null,"next":{"$id":"4","left":null,"next":{"$id":"5","left":null,"next":{"$id":"6","left":null,"next":null,"right":null,"val":7},"right":null,"val":6},"right":null,"val":5},"right":null,"val":4},"next":{"$id":"7","left":{"$ref":"5"},"next":null,"right":{"$ref":"6"},"val":3},"right":{"$ref":"4"},"val":2},"next":null,"right":{"$ref":"7"},"val":1} 解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。
提示:
你只能使用常量级额外空间。使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。第一种思路:
如果不要求O(1)的空间复杂度,那么可以利用层序遍历得到每个节点的next指针指向的节点……
""" # Definition for a Node. class Node(object): def __init__(self, val, left, right, next): self.val = val self.left = left self.right = right self.next = next """ class Solution(object): def connect(self, root): """ :type root: Node :rtype: Node """ queue = [root] while(queue): next_queue = [] for i, node in enumerate(queue): if not node: continue if i != len(queue) - 1:#不是最后一个 node.next = queue[i + 1] next_queue.append(node.left) next_queue.append(node.right) queue = next_queue[:] return root第二种思路:
既然要求了O(1)的空间复杂度,那么就得换一种思路:
观察可得,对于每个节点Node的左孩子Node.left,这个左孩子的next一定是指向它的兄弟节点,即Node.right
对于每个节点Node的右孩子,就得分两种情况讨论:
如果Node.next == None,即Node自己就没有下一个节点,那么Node.right也没有下一个节点。
如果Node有下一个节点, 那么Node.right.next = Node.next.left。
""" # Definition for a Node. class Node(object): def __init__(self, val, left, right, next): self.val = val self.left = left self.right = right self.next = next """ class Solution(object): def connect(self, root): """ :type root: Node :rtype: Node """ #先排除掉不需要处理的情况 if not root or (not root.left and not root.right): return root #某一个节点的左孩子的next一定是指向这个节点的右孩子 root.left.next = root.right #当某一个节点的next不为空的时候,这个节点的右孩子的next一定是指向该节点next的left if root.next: root.right.next = root.next.left #递归处理下一层 self.connect(root.left) self.connect(root.right) return root