C - Boxes and Candies(贪心)

    xiaoxiao2022-07-13  146

    Time Limit: 2 sec / Memory Limit: 256 MB

    Score : 300300 points

    Problem Statement

    There are NN boxes arranged in a row. Initially, the ii-th box from the left contains aiai candies.

    Snuke can perform the following operation any number of times:

    Choose a box containing at least one candy, and eat one of the candies in the chosen box.

    His objective is as follows:

    Any two neighboring boxes contain at most xx candies in total.

    Find the minimum number of operations required to achieve the objective.

    Constraints

    2≤N≤1052≤N≤1050≤ai≤1090≤ai≤1090≤x≤1090≤x≤109

    Input

    The input is given from Standard Input in the following format:

    NN xx a1a1 a2a2 ...... aNaN

    Output

    Print the minimum number of operations required to achieve the objective.


    Sample Input 1 Copy

    Copy

    3 3 2 2 2

    Sample Output 1 Copy

    Copy

    1

    Eat one candy in the second box. Then, the number of candies in each box becomes (2,1,2)(2,1,2).


    Sample Input 2 Copy

    Copy

    6 1 1 6 1 2 0 4

    Sample Output 2 Copy

    Copy

    11

    For example, eat six candies in the second box, two in the fourth box, and three in the sixth box. Then, the number of candies in each box becomes (1,0,1,0,0,1)(1,0,1,0,0,1).


    Sample Input 3 Copy

    Copy

    5 9 3 1 4 1 5

    Sample Output 3 Copy

    Copy

    0

    The objective is already achieved without performing operations.


    Sample Input 4 Copy

    Copy

    2 0 5 5

    Sample Output 4 Copygeininm

    Copy

    10

    All the candies need to be eaten.

    题意:给你n个数,保证任意相邻的两个数的和不超过x,(每一次操作只能让其中的一个数-1)问至少要操作多少次。

    思路:直接贪心就行了

    代码:

    #include<bits/stdc++.h> #define ll long long using namespace std; ll a[100009]; int main() { ll n,x; cin>>n>>x; for(ll i=1;i<=n;i++) { cin>>a[i]; } ll sum=0; if(a[1]>x) { sum+=a[1]-x; a[1]=x; } for(ll i=2;i<=n;i++) { if(a[i]+a[i-1]>x) { sum+=(a[i]+a[i-1]-x); a[i]-=(a[i]+a[i-1]-x); } } cout<<sum<<endl; }

     

    最新回复(0)