tensorflow4-tensorboard应用

    xiaoxiao2022-07-13  155

    重要知识点总结

    1. 命名空间的应用

    with tf.name_scope('input'):

    2. scalar、histogram、image 等的使用

    tf.summary.scalar('stddev', stddev)#标准差 tf.summary.scalar('max', tf.reduce_max(var))#最大值 tf.summary.scalar('min', tf.reduce_min(var))#最小值 tf.summary.histogram('histogram', var)#直方图

    3.  产生 metadata 文件

    if tf.gfile.Exists(DIR + 'projecto\\projector\\metadata.tsv'): tf.gfile.DeleteRecursively(DIR + 'projector\\projector\\metadata.tsv') with open(DIR + 'projector\\projector\\metadata.tsv', 'w') as f: labels = sess.run(tf.argmax(mnist.test.labels[:],1)) for i in range(image_num): f.write(str(labels[i])+'\n')

    4. 通过 projector.ProjectorConfig 生成日志文件

    config = projector.ProjectorConfig() embed = config.embeddings.add() embed.tensor_name = embedding.name embed.metadata_path = DIR + 'projector\\projector\\metadata.tsv' embed.sprite.image_path = DIR + 'projector\\data\\img.png' embed.sprite.single_image_dim.extend([28,28]) projector.visualize_embeddings(projector_writer,config)

    5. 保存日志文件

    save.save(sess,DIR + 'projector\\projector\\a_module.ckpt',global_step=max_step)

    整体代码如下图:

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.contrib.tensorboard.plugins import projector #载入数据集 mnist = input_data.read_data_sets("F:/AI/AItest/MNIST_data",one_hot=True) #运行次数 max_step = 100 #图片数量 image_num = 3000 #文件路径 DIR = 'F:\\AI/AItest\\' sess = tf.Session() #载入图片 embedding = tf.Variable(tf.stack(mnist.test.images[:image_num]),trainable=False,name='embedding') #参数概要 def variable_summaries(var): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean)#平均值 with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev)#标准差 tf.summary.scalar('max', tf.reduce_max(var))#最大值 tf.summary.scalar('min', tf.reduce_min(var))#最小值 tf.summary.histogram('histogram', var)#直方图 #命名空间 with tf.name_scope('input'): #定义两个placeholder x = tf.placeholder(tf.float32,[None,784],name='x-input') y = tf.placeholder(tf.float32,[None,10],name='y-input') #显示图片 with tf.name_scope('input_reshape'): image_shaped_input = tf.reshape(x,[-1,28,28,1]) tf.summary.image('input',image_shaped_input,10) with tf.name_scope('layer'): #创建一个简单的神经网络 with tf.name_scope('wights'): W = tf.Variable(tf.zeros([784,10]),name='W') variable_summaries(W) with tf.name_scope('biases'): b = tf.Variable(tf.zeros([10]),name='b') variable_summaries(b) with tf.name_scope('wx_plus_b'): wx_plus_b = tf.matmul(x,W) + b with tf.name_scope('softmax'): prediction = tf.nn.softmax(wx_plus_b) #二次代价函数 # loss = tf.reduce_mean(tf.square(y-prediction)) with tf.name_scope('loss'): loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) tf.summary.scalar('loss',loss) with tf.name_scope('train'): #使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量 sess.run(tf.global_variables_initializer()) with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): #结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置 with tf.name_scope('accuracy'): #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) tf.summary.scalar('accuracy',accuracy) #产生metadata文件 if tf.gfile.Exists(DIR + 'projecto\\projector\\metadata.tsv'): tf.gfile.DeleteRecursively(DIR + 'projector\\projector\\metadata.tsv') with open(DIR + 'projector\\projector\\metadata.tsv', 'w') as f: labels = sess.run(tf.argmax(mnist.test.labels[:],1)) for i in range(image_num): f.write(str(labels[i])+'\n') #合并所有的summary merged = tf.summary.merge_all() projector_writer = tf.summary.FileWriter(DIR + 'projector/projector',sess.graph) save = tf.train.Saver() config = projector.ProjectorConfig() embed = config.embeddings.add() embed.tensor_name = embedding.name embed.metadata_path = DIR + 'projector\\projector\\metadata.tsv' embed.sprite.image_path = DIR + 'projector\\data\\img.png' embed.sprite.single_image_dim.extend([28,28]) projector.visualize_embeddings(projector_writer,config) for i in range(max_step): batch_xs,batch_ys = mnist.train.next_batch(100) run_options = tf.RunOptions(trace_level = tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() summary,_ = sess.run([merged,train_step],feed_dict={x:batch_xs,y:batch_ys},options=run_options,run_metadata=run_metadata) projector_writer.add_run_metadata(run_metadata,'stepd' % i) projector_writer.add_summary(summary,i) if i0 == 0: acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) print("Iter " + str(i) + ",Testing Accuracy " + str(acc)) save.save(sess,DIR + 'projector\\projector\\a_module.ckpt',global_step=max_step) projector_writer.close() sess.close()

    使用命令行运行tensorboard的结果:

    tip:如果日志文件在其他的盘,需要先切换到该盘,然后使用tensorboard --logdir=(路径名称),会出现一个地址,直接用火狐或者google浏览器打开就好

    结果如图所示:

     

     

     

     

    最新回复(0)