来源:https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#training-an-image-classifier
来源:https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html
查看有多少个GPU可以让我们使用: torch.cuda.device_count() 让模型并行 model = nn.DataParallel(model) 一个例子: # 导入需要的包,定义超参 import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader # Parameters and DataLoaders input_size = 5 output_size = 2 batch_size = 30 data_size = 100 # 寻找并定义设备 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 准备随机数据集 class RandomDataset(Dataset): def __init__(self, size, length): self.len = length self.data = torch.randn(length, size) def __getitem__(self, index): return self.data[index] def __len__(self): return self.len # 定义一个简单的线性模型 class Model(nn.Module): # Our model def __init__(self, input_size, output_size): super(Model, self).__init__() self.fc = nn.Linear(input_size, output_size) def forward(self, input): output = self.fc(input) print("\tIn Model: input size", input.size(), "output size", output.size()) return output # 创建模型并让模型并行化 model = Model(input_size, output_size) if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs model = nn.DataParallel(model) model.to(device) # 运行模型 for data in rand_loader: input = data.to(device) output = model(input) print("Outside: input size", input.size(), "output_size", output.size())亲测发现如果只是在CPU上,即使你强行定义并行,也不会跑得更快一些。
注意我们自定义数据集的方式,必须实现“def getitem(self, index)”和“def len(self)”。
