Redis是一种面向“key-value”类型数据的分布式NoSQL数据库系统,具有高性能、持久存储、适应高并发应用场景等优势。它虽然起步较晚,但发展却十分迅速。
由于Redis的数据都存放在内存中,如果没有配置持久化,redis重启后数据就全丢失了,于是需要开启redis的持久化功能,将数据保存到磁盘上,当redis重启后,可以从磁盘中恢复数据。redis提供两种方式进行持久化,一种是RDB持久化,另外一种是AOF持久化(append only file)。快照是一次全量备份,AOF 日志是连续的增量备份。快照是内存数据的二进制序列化形式,在存储上非常紧凑,而 AOF 日志记录的是内存数据修改的指令记录文本。AOF 日志在长期的运行过程中会变的无比庞大,数据库重启时需要加载 AOF 日志进行指令重放,这个时间就会无比漫长。所以需要定期进行 AOF 重写,给 AOF 日志进行瘦身。
写操作大致有上面5个流程,下面我们结合上面的5个流程看一下各种级别的故障:
当数据库系统故障时,这时候系统内核还是完好的。那么此时只要我们执行完了第3步,那么数据就是安全的,因为后续操作系统会来完成后面几步,保证数据最终会落到磁盘上。当系统断电时,这时候上面5项中提到的所有缓存都会失效,并且数据库和操作系统都会停止工作。所以只有当数据在完成第5步后,才能保证在断电后数据不丢失。
对于第一个问题,通常数据库层面会进行全面控制。
而对第二个问题,操作系统有其默认的策略,但是我们也可以通过POSIX API提供的fsync系列命令强制操作系统将数据从内核区写到磁盘控制器上。
对于第三个问题,好像数据库已经无法触及,但实际上,大多数情况下磁盘缓存是被设置关闭的,或者是只开启为读缓存,也就是说写操作不会进行缓存,直接写到磁盘。建议的做法是仅仅当你的磁盘设备有备用电池时才开启写缓存。
RDB持久化是指在指定的时间间隔内将内存中的数据集快照写入磁盘。
也是默认的持久化方式,这种方式是就是将内存中数据以快照的方式写入到二进制文件中,默认的文件名为dump.rdb。
可以通过配置设置自动做快照持久化的方式,我们可以配置redis在n秒内如果超过m个key被修改就自动做快照,下面是默认的快照保存配置。
save [seconds] [changes]
save 900 1 #900秒内如果超过1个key被修改,则发起快照保存 save 300 10 #300秒内容如超过10个key被修改,则发起快照保存 save 60 10000 #60秒内容如超过10000个key被修改,则发起快照保存client 也可以使用save或者bgsave命令通知redis做一次快照持久化。save操作是在主线程中保存快照的,由于redis是用一个主线程来处理所有client的请求,这种方式会阻塞所有client请求。所以不推荐使用。
另一点需要注意的是,每次快照持久化都是将内存数据完整写入到磁盘一次,并不是增量的只同步脏数据。如果数据量大的话,而且写操作比较多,必然会引起大量的磁盘io操作,可能会严重影响性能。
redis会将每一个收到的写命令都通过write函数追加到文件中(默认是 appendonly.aof)。
当redis重启时会通过重新执行文件中保存的写命令来在内存中重建整个数据库的内容。当然由于os会在内核中缓存 write做的修改,所以可能不是立即写到磁盘上。这样aof方式的持久化也还是有可能会丢失部分修改。不过我们可以通过配置文件告诉redis我们想要通过fsync函数强制os写入到磁盘的时机。有三种方式如下(默认是:每秒fsync一次)
appendonly yes //启用aof持久化方式 # appendfsync always //每次收到写命令就立即强制写入磁盘,最慢的,但是保证完全的持久化,不推荐使用 appendfsync everysec //每秒钟强制写入磁盘一次,在性能和持久化方面做了很好的折中,推荐 # appendfsync no //完全依赖os,性能最好,持久化没保证AOF 方式带来的一个问题是,持久化文件会变的越来越大。例如我们调用incr test命令100次,文件中必须保存全部的100条命令,其实有99条都是多余的。因为要恢复数据库的状态其实文件中保存一条set test 100就够了。
为了压缩aof的持久化文件。redis提供了bgrewriteaof命令。收到此命令redis将使用与快照类似的方式将内存中的数据以命令的方式保存到临时文件中,最后替换原来的文件。具体过程如下
redis调用fock 函数产生一个子进程,现在有父子两个进程子进程往临时文件中写入重建数据库状态的命令(AOF重写并不需要对原有AOF文件进行任何的读取,写入,分析等操作,这个功能是通过读取服务器当前的数据库状态来实现的)父进程继续处理client请求,除了把写命令写入到原来的aof文件中。同时把收到的写命令缓存起来。这样就能保证如果子进程重写失败的话并不会出问题。当子进程把快照内容写入以命令方式写到临时文件中后,子进程发信号通知父进程。然后父进程把缓存的写命令也写入到临时文件。现在父进程可以使用临时文件替换老的aof文件,并重命名,后面收到的写命令也开始往新的aof文件中追加。需要注意到是重写aof文件的操作,并没有读取旧的aof文件,而是将整个内存中的数据库内容用命令的方式重写了一个新的aof文件,这点和快照有点类似。
数据安全性高:你可以设置不同的 fsync 策略,比如无 fsync ,每秒钟一次 fsync ,或者每次执行写入命令时 fsync 。 AOF 的默认策略为每秒钟 fsync 一次,在这种配置下,Redis 仍然可以保持良好的性能,并且就算发生故障停机,也最多只会丢失一秒钟的数据( fsync 会在后台线程执行,所以主线程可以继续努力地处理命令请求)。
AOF 文件是一个只进行追加操作的日志文件(append only log), 即使日志因为某些原因而包含了未写入完整的命令(比如写入时磁盘已满,写入中途停机,等等), redis-check-aof 工具也可以轻易地修复这种问题。
Redis 可以在 AOF 文件体积变得过大时,自动地在后台对 AOF 进行重写: 重写后的新 AOF 文件包含了恢复当前数据集所需的最小命令集合。 整个重写操作是绝对安全的,因为 Redis 在创建新 AOF 文件的过程中,会继续将命令追加到现有的 AOF 文件里面,即使重写过程中发生停机,现有的 AOF 文件也不会丢失。 而一旦新 AOF 文件创建完毕,Redis 就会从旧 AOF 文件切换到新 AOF 文件,并开始对新 AOF 文件进行追加操作。
AOF文件易读,可修改。AOF 文件有序地保存了对数据库执行的所有写入操作, 这些写入操作以 Redis 协议的格式保存, 因此 AOF 文件的内容非常容易被人读懂, 对文件进行分析(parse)也很轻松。 导出(export) AOF 文件也非常简单: 举个例子, 如果你不小心执行了 FLUSHALL 命令, 但只要 AOF 文件未被重写, 那么只要停止服务器, 移除 AOF 文件末尾的 FLUSHALL 命令, 并重启 Redis ,就可以将数据集恢复到 FLUSHALL 执行之前的状态。
文件会比RDB形式的文件大。对于相同的数据集来说,AOF 文件的体积通常要大于 RDB 文件的体积。
数据集大的时候,比rdb启动效率低。根据所使用的 fsync 策略,AOF 的速度可能会慢于 RDB 。 在一般情况下, 每秒 fsync 的性能依然非常高, 而关闭 fsync 可以让 AOF 的速度和 RDB 一样快, 即使在高负荷之下也是如此。 不过在处理巨大的写入载入时,RDB 可以提供更有保证的最大延迟时间(latency)。
一般来说,如果想达到足以媲美 PostgreSQL 的数据安全性, 你应该同时使用两种持久化功能。如果你非常关心你的数据,但仍然可以承受数分钟以内的数据丢失, 那么你可以只使用 RDB 持久化。有很多用户都只使用 AOF 持久化, 但我们并不推荐这种方式: 因为定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快, 除此之外。因为以上提到的种种原因, 未来我们可能会将 AOF 和 RDB 整合成单个持久化模型。
参考:
https://www.cnblogs.com/xingzc/p/5988080.html
https://www.cnblogs.com/chenliangcl/p/7240350.html
https://www.cnblogs.com/bamaofan/p/5284014.html
https://blog.csdn.net/bible_reader/article/details/84138665
