参考文献:https://blog.csdn.net/ban_xicheng/article/details/80430767
学会h5py可以制作自己的pointnet数据集
h5py文件是存放两类对象的容器,数据集(dataset)和组(group),dataset类似数组类的数据集合,和numpy的数组差不多。group是像文件夹一样的容器,它好比python中的字典,有键(key)和值(value)。group中可以存放dataset或者其他的group。”键”就是组成员的名称,”值”就是组成员对象本身(组或者数据集),下面来看下如何创建组和数据集。==
①创建一个h5py文件
import h5py #要是读取文件的话,就把w换成r f=h5py.File("myh5py.hdf5","w")在当前目录下会生成一个myh5py.hdf5文件
②创建dataset数据集
import h5py f=h5py.File("myh5py.hdf5","w") #deset1是数据集的name,(20,)代表数据集的shape,i代表的是数据集的元素类型 d1=f.create_dataset("dset1", (20,), 'i') for key in f.keys(): print(key) print(f[key].name) print(f[key].shape) print(f[key].value)输出如下: 这里我们仅仅创建了一个存放20个整型元素的数据集,并没有赋值,默认全是0,如何赋值呢,看下面的代码。
import h5py import numpy as np f=h5py.File("myh5py.hdf5","w") d1=f.create_dataset("dset1",(20,),'i') #赋值 d1[...]=np.arange(20) #或者我们可以直接按照下面的方式创建数据集并赋值 f["dset2"]=np.arange(15) for key in f.keys(): print(f[key].name) print(f[key].value)输出如下: 如果我们有现成的numpy数组,那么可以在创建数据集的时候就赋值,这个时候就不必指定数据的类型和形状了,只需要把数组名传给参数data。
import h5py import numpy as np f=h5py.File("myh5py.hdf5","w") a=np.arange(20) d1=f.create_dataset("dset1",data=a) for key in f.keys(): print(f[key].name) print(f[key].value)输出如下: 现在把这几种创建的方式混合写下。看下面的代码
import h5py import numpy as np f=h5py.File("myh5py.hdf5","w") #分别创建dset1,dset2,dset3这三个数据集 a=np.arange(20) d1=f.create_dataset("dset1",data=a) d2=f.create_dataset("dset2",(3,4),'i') d2[...]=np.arange(12).reshape((3,4)) f["dset3"]=np.arange(15) for key in f.keys(): print(f[key].name) print(f[key].value)输出如下:
import h5py import numpy as np f=h5py.File("myh5py.hdf5","w") #创建一个名字为bar的组 g1=f.create_group("bar") #在bar这个组里面分别创建name为dset1,dset2的数据集并赋值。 g1["dset1"]=np.arange(10) g1["dset2"]=np.arange(12).reshape((3,4)) for key in g1.keys(): print(g1[key].name) print(g1[key].value)输出如下: 注意观察数据集dset1和dset2的名字是不是有点和前面的不一样,如果是直接创建的数据集,不在任何组里面,那么它的名字就是/+名字,现在这两个数据集都在bar这个group(组)里面,名字就变成了/bar+/名字,是不是有点文件夹的感觉!继续看下面的代码,你会对group和dataset的关系进一步了解。
import h5py import numpy as np f=h5py.File("myh5py.hdf5","w") #创建组bar1,组bar2,数据集dset g1=f.create_group("bar1") g2=f.create_group("bar2") d=f.create_dataset("dset",data=np.arange(10)) #在bar1组里面创建一个组car1和一个数据集dset1。 c1=g1.create_group("car1") d1=g1.create_dataset("dset1",data=np.arange(10)) #在bar2组里面创建一个组car2和一个数据集dset2 c2=g2.create_group("car2") d2=g2.create_dataset("dset2",data=np.arange(10)) #根目录下的组和数据集 print(".............") for key in f.keys(): print(f[key].name) #bar1这个组下面的组和数据集 print(".............") for key in g1.keys(): print(g1[key].name) #bar2这个组下面的组和数据集 print(".............") for key in g2.keys(): print(g2[key].name) #顺便看下car1组和car2组下面都有什么,估计你都猜到了为空。 print(".............") print(c1.keys()) print(c2.keys())输出如下:
